
0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

IEEE TRANSACTIONS ON COMMUNICATIONS 1

A Threshold-Based Min-Sum Algorithm to Lower
the Error Floors of Quantized LDPC Decoders

Homayoon Hatami, Member, IEEE, David G. M. Mitchell, Senior Member, IEEE,
Daniel J. Costello, Jr., Life Fellow, IEEE, and Thomas E. Fuja Fellow, IEEE

Abstract—For decoding low-density parity-check (LDPC)
codes, the attenuated min-sum algorithm (AMSA) and the offset
min-sum algorithm (OMSA) can outperform the conventional
min-sum algorithm (MSA) at low signal-to-noise-ratios (SNRs),
i.e., in the “waterfall region” of the bit error rate curve. This
paper demonstrates that, for quantized decoders, MSA actually
outperforms AMSA and OMSA in the “error floor” region, and
that all three algorithms suffer from a relatively high error floor.
This motivates the introduction of a modified MSA that is de-
signed to outperform MSA, AMSA, and OMSA across all SNRs.
The new algorithm is based on the assumption that trapping
sets are the major cause of the error floor for quantized LDPC
decoders. A performance estimation tool based on trapping sets
is used to verify the effectiveness of the new algorithm and also to
guide parameter selection. We also show that the implementation
complexity of the new algorithm is only slightly higher than that
of AMSA or OMSA. Finally, the simulated performance of the
new algorithm, using several classes of LDPC codes (including
spatially coupled LDPC codes), is shown to outperform MSA,
AMSA, and OMSA across all SNRs.

Index Terms—LDPC codes, min-sum decoding, error floors,
absorbing sets, trapping sets, decoder quantization.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are a class of
linear block codes for which the performance of iterative
message passing (MP) decoding can approach that of much
more complex maximum likelihood (ML) decoding. The min-
sum algorithm (MSA) [2] is a simplified version of the
sum-product algorithm (SPA) [3] that is commonly used for
iterative MP decoding of LDPC codes, where the check node
computation is approximated and hence is significantly easier
to perform. This simplification is particularly desirable for
hardware decoder implementations. Moreover, unlike the SPA,
no estimation of the channel signal-to-noise ratio (SNR) is
needed at the receiver for an additive white Gaussian noise
(AWGN) channel.

This material is based upon work supported by the National Science
Foundation under Grant Nos. ECCS-1710920 and OIA-1757207. This article
was presented in part at the IEEE International Symposium on Information
Theory, Paris, France, July 2019.

Homayoon Hatami was with the Department of Electrical Engineering, Uni-
versity of Notre Dame, Notre Dame, IN, 46556 USA. He is now with Samsung
Semiconductor Inc., San Diego, CA 92121 USA (e-mail: hhatami@nd.edu).

David G. M. Mitchell is with the Klipsch School of Electrical and Computer
Engineering, New Mexico State University, Las Cruces, NM, 88003 USA
(email: dgmm@nmsu.edu).

Daniel J. Costello, Jr., and Thomas E. Fuja are with the Department of
Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556
USA (e-mail: costello.2@nd.edu; tfuja@nd.edu).

In [4], two modifications of the MSA, denoted attenuated
MSA (AMSA)1 and offset MSA (OMSA) were introduced
to adjust for the error in the approximation and improve
performance. Also, [5] independently introduced the OMSA.
Compared to the MSA, these algorithms reduce the magni-
tudes of the log-likelihood ratios (LLRs) computed at the
check nodes of the Tanner graph representation of the parity-
check matrix H of an LDPC code. Both variants have been
shown to achieve better waterfall (low SNR) performance
(closer to the SPA) compared to the conventional MSA [4],
[5]. Numerous approaches have been proposed in the literature
to improve the performance of the MSA, including adjusting
the offset by iteration [6], techniques to approximate the error
term [7], [8], and modified quantizer designs [9], [10].

Practical implementations of LDPC decoders require a
finite precision (quantized) representation of the LLRs. In [4],
quantized density evolution (DE) was used to find the optimum
attenuation and offset parameters for the AMSA and OMSA,
in the sense that DE calculates the iterative decoding thresh-
old, which characterizes the waterfall performance. Follow-
ing [4], [5], several papers focused on further improving the
waterfall performance of the MSA for quantized [9], [11] and
unquantized decoders [12], [13]. At high SNRs, quantization
typically causes the early onset of an error floor. In [14]–
[17], it was shown that certain objects, called trapping sets,
elementary trapping sets, leafless elementary trapping sets,
or absorbing sets, in the Tanner graph cause the iterative
decoding process to get stuck, resulting in decoding errors
at high SNRs. Hereafter, we refer to the sub-graphs induced
by these sets, as well as similar sets, as problematic graph-
ical objects. Several methods based on problematic objects
have been proposed to estimate the performance of LDPC
codes [18]–[24] and a number of strategies have been proposed
to lower the error floor of quantized LDPC decoders, including
quantizer design [11], [25], [26], modifications to iterative
decoding [27]–[30], and post-processing [31]–[34].

In this paper, we propose a novel modification to the check
node update of quantized MSA that is straightforward to
implement and reduces the error floor when compared to the
methods proposed in [4], [5]. First, we show that the AMSA
and OMSA exhibit worse (higher) error floors than the MSA
with parameters that are optimized for waterfall performance.
We then introduce a modification to the MSA that applies
the strategies from the AMSA and the OMSA selectively,
i.e., it applies attenuation/offset when it would be helpful

1Attenuated MSA is also known as normalized MSA.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

2 IEEE TRANSACTIONS ON COMMUNICATIONS

and does not apply it otherwise. Assuming that there exist
problematic graphical objects that cause most of the decoding
failures in the high SNR regime, we further show that the
new MSA modification causes these objects to become less
prone to decoding failures. As a result, the new algorithm
matches the waterfall performance of the AMSA and OMSA,
while improving their error floor performance. We note that no
information about the location or structure of the problematic
objects is required to utilize this approach; however, knowl-
edge of the problematic object facilitates determination of the
optimal algorithm parameters. Moreover, we note that AMSA
(respectively OMSA) can be viewed as a particular case of
TAMSA (resp. TOMSA) and, as such, the performance of
TAMSA (resp. TOMSA) is at least as good as AMSA (resp.
OMSA) with optimal parameter selection. We quantify the
complexity of the proposed scheme and show that, since it uses
the information that is already generated inside the check node
processing unit of the AMSA or OMSA, the new algorithm is
only slightly more complex to implement.

Due to the time-consuming process of simulating the high
SNR performance of LDPC codes, we utilize the code-
independent and problematic object-specific method of [18] to
guide/optimize parameter selection and to evaluate the impact
of the proposed algorithm on the performance of LDPC codes
containing problematic objects at high SNRs. The results
indicate that the new algorithm improves (reduces) the error
floor caused by specific problematic objects compared to the
MSA, AMSA, or OMSA. Finally, we present the simulated
performance of certain randomly constructed and structured
LDPC block codes (LDPC-BCs) and spatially coupled LDPC
codes (SC-LDPCCs) [35] to verify the effectiveness and
versatility of the algorithm. In all cases, the new algorithm
performs at least as well as the MSA, AMSA, or OMSA, at
both low and high SNRs.

II. BACKGROUND

Let V = {v1, v2, . . . , vn} and C = {c1, c2, . . . , cm} repre-
sent the sets of variable nodes and check nodes, respectively,
of a bipartite Tanner graph representation of an LDPC code
with parity-check matrix H. Assume that a binary codeword
u = (u1, u2, . . . , un) is binary phase shift keyed (BPSK)
modulated such that each zero is mapped to +1 and each one
is mapped to −1. The modulated signal is transmitted over an
AWGN channel with mean 0 and standard deviation σ. The
received signal is r̃ = 1−2u+n, where n is the channel noise.
We denote the quantized version of r̃ as r = (r1, r2, . . . , rn).

A. The Min-Sum Algorithm and its Modifications

The MSA is an iterative MP algorithm that is simpler to
implement than the SPA. Unlike the SPA, the MSA does
not require channel noise information to calculate the channel
LLRs. The SPA is optimum for codes without cycles, but for
finite length codes and finite precision LLRs, the SPA is not
necessarily optimum, particularly with respect to error floor
performance [29]. Let Vij represent the LLR passed from
variable node vi to check node cj in a given iteration and let

Cji represent the LLR passed from cj to vi.2 The check nodes
that are neighbors to vi are denoted N(vi), and the variable
nodes that are neighbors to cj are denoted N(cj). To initialize
decoding, each variable node vi passes ri to the check nodes
in N(vi), i.e.,

Vij = ri, (1)

where the Vij’s computed throughout the decoding process
are referred to as the variable node LLRs.3 The check node
operation to calculate the LLRs sent from check node cj to
variable node vi is given by

Cji =

 ∏
i′∈N(cj)\i

sign (Vi′j)

 · min
i′∈N(cj)\i

|Vi′j | , (2)

where the Cji’s computed throughout the decoding process
are referred to as the check node LLRs. After each iteration,
the hard decision estimate û is checked to see if it is a valid
codeword, where ûi = 0 iff

ri +
∑

j′∈N(vi)

Cj′i > 0. (3)

If û is a valid codeword, or if the iteration number has reached
Imax, decoding stops. Otherwise, the variable node LLRs are
calculated as

Vij = ri +
∑

j′∈N(vi)\j

Cj′i (4)

and decoding continues using (2).
In [4], two modified versions of the MSA, called attenuated

MSA (AMSA) and offset MSA (OMSA), were introduced to
reduce the waterfall performance loss of the MSA compared
to the SPA. The modified check node computations are given
by

Cji = α

 ∏
i′∈N(cj)\i

sign (Vi′j)

 · min
i′∈N(cj)\i

|Vi′j | , (5)

and

Cji =

 ∏
i′∈N(cj)\i

sign (Vi′j)

 ·max{ min
i′∈N(cj)\i

|Vi′j | − β, 0},

(6)

respectively, where α, β > 0 are constants. In both algorithms,
the check node LLR magnitudes are modified to be smaller
than those of MSA. This reduces the negative effect of
overestimating the LLR magnitudes in the MSA, whose larger
check node LLR magnitudes compared to the SPA can cause
additional errors in decoding at low SNRs.

2Note that the iteration indices are dropped for clarity of notation.
3In the SPA, computing an LLR value from the received value ri requires

multiplying by 2/σ2, where σ2 is the channel noise variance. However, this
normalization is not required for min-sum decoding and its variants, so we
omit it here.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

SUBMITTED PAPER 3

B. Implementation of the MSA, AMSA, and OMSA

To implement the check node update of (2) in the check
node processing unit corresponding to cj , the sign and magni-
tude of Cji to be sent to each vi are calculated separately
as follows. First, for all i′ ∈ N(cj), the signs of Vi′j
are multiplied to form

∏
i′∈N(cj)

sign (Vi′j). Then, for each

i ∈ N(cj), sign (Vij) is multiplied by
∏

i′∈N(cj)

sign (Vi′j) to

form
∏

i′∈N(cj)\i
sign (Vi′j). Second, the process of calculating

|Cji| involves finding two minimum values, the first and
second minimum of all the |Vi′j | at check node cj , denoted
M1,j and M2,j , respectively. For each Cji, if the variable
node vi corresponds to M1,j , then |Cji| = M2,j , otherwise,
|Cji| = M1,j . The implementation of (5) or (6) is the same
with an extra step of attenuating or offsetting the minimum
values.

The process of finding M1,j and M2,j is complex to
implement. Therefore, several methods have been suggested
to reduce the complexity of the process [36] or to avoid
calculating M2,j and instead estimate it based on M1,j [27]–
[29]. The result is that M1,j plays an important role in the
check node processing unit, and the new algorithm introduced
in this paper also relies on M1,j , thus making the extension of
the algorithm to techniques designed for complexity reduction
possible.

C. Quantized Decoders

In a uniform quantized decoder, the operations in (1) – (6)
have finite precision, i.e., the values are quantized to a set of
numbers ranging from −`max to `max, with step size ∆, where
the resulting quantizer thresholds are set from −`max + ∆

2 to
`max−∆

2 . The attenuation and offset parameters α and β in (5)
and (6) that have the best iterative decoding thresholds were
found using quantized DE in [4]. In [5], the effects of these
modifications on the performance of unquantized, clipped, and
quantized versions of the MSA for three different codes were
studied using extensive simulations.

D. Trapping Sets and Error Floors

Let A denote a subset of V of cardinality a. Let Aeven

and Aodd represent the subsets of check nodes connected to
variable nodes in A with even and odd degrees, respectively,
where |Aodd| = b. Here, A is called an (a, b) trapping set [14].
A is defined to be an (a, b) absorbing set if each variable
node in A is connected to fewer check nodes in Aodd than
in Aeven [17]. These sets, along with similar objects such as
elementary trapping sets and leafless elementary trapping sets,
are known to cause most of the decoding errors at high SNRs
in MP decoders [17]. In Fig. 1, the sub-graph G(A) induced by
a (5, 3) absorbing set A is shown. In the next section, we will
explain how the check node LLRs in (2) can be modified to
improve decoding performance at high SNR, i.e., to lower the
error floor, by considering decoder behavior in the presence
of such problematic objects.

Aeven Aodd

A

Fig. 1: The sub-graph G(A) induced by a (5, 3) absorbing set A.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 2: Simulated performance of an (8000,4000) LDPC code de-
coded with the MSA, AMSA, and OMSA. Solid curves represent
BER, dashed curves represent FER.

III. THRESHOLD ATTENUATED/OFFSET MSA

A. Motivation and Rationale

In this section, we present and discuss some empirical obser-
vations that motivate our approach in this paper. As discussed
in the previous section, it is known that applying attenuation
or offset when computing the check node LLRs typically
improves performance in the low SNR (waterfall) region of
the BER curve for quantized decoders. On the other hand,
since high SNR performance is tied to problematic graphical
objects, the AMSA and OMSA do not necessarily achieve a
good error floor. For example, assuming BPSK modulation on
the AWGN channel, Fig. 2 presents the simulated bit-error-
rate (BER) and frame-error-rate (FER) performance of the
(8000,4000) code of [37] (which was used in [4] and [5])
with a 5-bit uniform quantizer, ∆ = 0.15, and `max = 2.25,
decoded using the MSA, AMSA, and OMSA. We also show
the performance of quantized SPA using 6-bit quantization (2-
bit integer, 3-bit fractional) for comparison.4 We see that the
AMSA and OMSA gain about 0.7dB in the waterfall compared
to the MSA. However, all the algorithms eventually exhibit an
error floor at higher SNRs. In the remainder of this section,
we discuss the high SNR decoder dynamics of an LDPC code
decoded with the MSA, AMSA, or OMSA and the relationship
to the problematic object(s) that cause the error floor.

At high SNRs, for a received vector r of channel LLRs,

4As has been pointed out in other publications, e.g. [25], the performance
of SPA in the error floor is severely affected by quantization.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

4 IEEE TRANSACTIONS ON COMMUNICATIONS

Cji =

(∏
i′∈N(cj)\i

sign (Vi′j)

)
· min
i′∈N(cj)\i

|Vi′j | , if min
i′∈N(cj)

|Vi′j | > τ,

α′

(∏
i′∈N(cj)\i

sign (Vi′j)

)
· min
i′∈N(cj)\i

|Vi′j | , otherwise.

(7)

Cji =

(∏
i′∈N(cj)\i

sign (Vi′j)

)
· min
i′∈N(cj)\i

|Vi′j | , if min
i′∈N(cj)

|Vi′j | > τ,(∏
i′∈N(cj)\i

sign (Vi′j)

)
·max{ min

i′∈N(cj)\i
|Vi′j | − β′, 0}, otherwise.

(8)

decoding is successful with high probability. In the case
of unsuccessful decoding, it is known that a small number
of problematic objects are likely to be the cause - objects
containing variable nodes with unreliable (small magnitude)
LLR values [17]. In this regime, the channel LLRs for the
variable nodes outside a problematic object will be, however,
mostly reliable and have large magnitudes. In other words, the
outside LLRs are typically initially large (with the correct sign)
and will continue to grow quickly to even larger values (often
`max). However, even if some/all of the incorrect sign LLRs
inside a problematic object are initially small, they can also be
observed to grow quickly to larger values without correcting
the errors in sign. This happens because the object contains
at least one short cycle, which prevents correction of the sign
errors [14], [16], [17].

To improve the probability of correcting errors occurring in
a problematic object G(A) at high SNR, we have observed by
extensive numerical simulations that it is helpful if the LLR
magnitudes sent from a check node cj ∈ Aeven to variable
nodes vi ∈ A grow more slowly (be attenuated) when cj
receives at least one unreliable (small magnitude) LLR from
a variable node in A. This ensures that any incorrect LLRs
received from the channel in A are not reinforced. If a check
node cj (inside or outside G(A)) receives all large magnitude
LLRs, on the other hand, these can be helpful for decod-
ing and hence should not be attenuated. These two factors
form the essence of the new threshold-based modification
of AMSA/OMSA, presented below, that can lead to correct
decoding of a received vector r that would not otherwise occur.

B. A Threshold Attenuated/Offset MSA

In our modified algorithm, we make use of a relationship
observed at high SNRs between the variable node LLR magni-
tudes |Vij | received by check node cj and the likelihood of the
check node cj being inside a problematic object G(A). This
relationship allows us to map the problem of locating errors
affected by G(A) into merely considering the variable node
LLR magnitudes |Vij | received at check node cj , i.e., we rely
on the |Vij |’s to tell us if cj is likely to be inside G(A) and
has the potential to cause decoding failures. At high SNRs,
the check node LLRs outside G(A) typically grow faster than
the LLRs inside G(A). Therefore, if a check node cj receives
at least one small LLR, i.e., mini′∈N(cj) |Vi′j | , |M1,j | ≤ τ ,

where τ is some threshold, it is likely that cj is inside G(A).
Consequently, to improve the error floor performance, we
propose the check node computation in (7) to replace (2),
where α′ ≤ 1 is an attenuation parameter designed to
reduce the check node LLR magnitudes sent from a check
node cj inside G(A) to the variable nodes in A. We denote
this modified check node update algorithm as the threshold
attenuated MSA (TAMSA). We will see in Sec. IV that, with
a proper choice of the parameters τ and α′, the TAMSA is
capable of correctly decoding some of the errors that occur in
the AMSA or MSA due to the problematic objects.

In (7), we use α′ to make the check node LLR magnitudes
smaller when mini′∈N(cj) |Vi′j | ≤ τ . As an alternative (or in
combination), an offset parameter β′ can be used to serve
the same purpose, as shown in (8), where β′ > 0 is an
offset parameter that reduces the check node LLR magnitudes.
We denote this modified check node update algorithm as the
threshold offset MSA (TOMSA).

Both the TAMSA and TOMSA selectively, or locally,
reduce the magnitudes of the check node LLRs that are likely
to belong to a problematic object without requiring knowledge
of its location or structure. The TAMSA and TOMSA add a
simple threshold test compared to the AMSA and OMSA,
while the attenuation (offset) parameter only needs to be
applied to a few check nodes at high SNRs.

C. Implementation of Threshold Attenuated/Offset MSA

We reviewed the implementation of the MSA, AMSA, and
OMSA in Sec. II-B. For the MSA, for some number K of
inputs to a check node processing unit, the implementation of
sub-units to calculate M1,j and M2,j and the index needed
to identify which input created M1,j requires a significant
number of multiplexers, comparators, and inverters, which is a
function of K (see Table II in [36]). A check node processing
unit must include some additional sub-units to generate the
proper output and apply the attenuation (offset) parameter for
the AMSA (OMSA).

Implementation of the TAMSA (TOMSA) adds just two
simple steps to the implementation of the AMSA (OMSA).
First, for a check node processing unit corresponding to cj ,
after calculating M1,j and M2,j , the value of M1,j must be
compared to τ . Second, a decision must be made based on
the outcome of the comparison to use the attenuated (offset)

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

SUBMITTED PAPER 5

or non-attenuated (non-offset) output. Consequently, imple-
mentation of the TAMSA (TOMSA) requires just one extra
comparator and K extra multiplexers to decide if attenuation
(offset) should be applied. If not, the additional multiplication
(subtraction) from attenuation (offset) is not necessary. Hence,
the extra requirements do not significantly increase the overall
area or delay of a check node processing unit.

IV. RESULTS AND DISCUSSION

In this section, to illustrate the robustness of the new
algorithm, we consider the (8000, 4000) code of [37] (used
in [4] and [5]), the progressive edge growth (PEG) (1008, 504)
LDPC code of [37] (used in [4]), and the quasi-cyclic (155, 64)
Tanner code of [38] decoded with various algorithms, includ-
ing the proposed TAMSA and TOMSA with different param-
eters, each using a 5-bit uniform quantizer with ∆ = 0.15
and `max = 2.25.5 In Section IV-A, we use a performance
estimation method to investigate how different parameter sets
can affect the error floor of any code containing a known
dominant problematic graphical object. In Section IV-B, we
show the simulated performance of the above codes with the
TAMSA for different parameter sets, and in Section IV-C
we discuss the choice of parameter sets that optimize the
performance of TAMSA. Finally, in Section V, we apply the
TAMSA to SC-LDPCCs and show the benefits of combining
spatial coupling with the TAMSA for improved performance
in both the waterfall and error floor relative to LDPC-BCs.

A. Performance Estimation Based on problematic objects

In this section, we utilize the method of [18] to estimate the
impact of a problematic object on the performance of an LDPC
code decoded with the MSA, AMSA, and TAMSA. In that
paper, the authors derived a lower bound on the FER of any
LDPC code containing a given problematic object (sub-graph),
assuming a particular message passing decoder and decoder
quantization. A crucial aspect of the lower bound is that it is
code-independent, in the sense that it can be derived based
only on a problematic object and then applied to any code
containing that object. Given the dominant problematic object,
decoder quantization, and decoding algorithm, a performance
estimate of the code containing the dominant object is derived.
We remark again that the number, type, and location of prob-
lematic objects in the Tanner graph do not need to be known
to implement the algorithm, but we will see in this section
that, if the dominant problematic object is known, then it can
facilitate determination of the optimum algorithm parameters.
The bounds were shown in [18] to be tight for a variety of
codes, problematic objects, and decoding algorithms.

By analyzing the AWGN channel performance simulations
of the (8000, 4000) code with a 5-bit quantizer, we find that
the (5, 3) absorbing set of Fig. 1 is the major cause of errors

5In our simulations, for the check node calculations, we do not quantize α,
β, and τ . However, the check node output is quantized. In the case of β (τ),
there is a unique quantized β (τ) that generates the same quantized check
node output as when β (τ) is unquantized. However, this is not the case for
α.

in the error floor.6 Based on this problematic object, high SNR
performance estimates of the code (or any code containing this
problematic object as the dominant object) can be obtained
for various TAMSA parameter sets and for various values of
Eb/N0(dB) using the method of [18]. For example, Fig. 3(a)
plots the estimated FER performance vs. the parameter sets
(α′, τ) for 0.5 ≤ α′ ≤ 1, 0 ≤ τ ≤ `max, and Eb/N0 = 2dB.7

(A contour plot of the same data is shown in Fig. 3(b).) Note
that when τ = `max, the TAMSA is equivalent to the AMSA
with α = α′, since attenuation is always applied. As shown
in Fig. 3(a), the line τ = `max = 2.25 has a very high FER,
meaning that any code containing this (5, 3) absorbing set
is adversely affected in the error floor when decoded using
the AMSA. Also, in two special cases, (α′, τ = 0) and
(α′ = 1, τ), the TAMSA is equivalent to the MSA, since
attenuation is never applied for these parameter sets. From
Fig. 3(a), we can therefore predict that the MSA will perform
better than the AMSA in the error floor for any code for which
the (5, 3) absorbing set is dominant. It is also important to
note from Fig. 3(a) that there are values of α and τ that
lead to better performance than can be achieved by either
the AMSA or the MSA for any code for which the (5, 3)
absorbing set is dominant. This observation supports our claim
that making use of the parameter τ in the TAMSA will reduce
the error probability associated with a specific problematic
object compared to either the AMSA or the MSA.

B. Simulated Performance of LDPC Codes with TAMSA and
TOMSA Decoders

Fig. 4 shows the BER and FER performance of the
(8000, 4000) code for the MSA, the AMSA with α = 0.8,
the OMSA with β = 0.15, the TAMSA with parame-
ters (α′ = 0.8, τ = 1.5), and the TOMSA with parameters
(β′ = 0.15, τ = 2). A syndrome-check stopping rule with a
maximum number of iterations Imax = 50 was employed
for all decoders. We see that, for the chosen parameters, the
TAMSA and TOMSA exhibit one to two orders of magnitude
better error floor performance than the MSA, AMSA, and
OMSA while maintaining the same waterfall performance.

Fig. 5 shows the BER and FER performance of the
(semi-structured) (1008, 504) PEG-LDPC code for the
AMSA, OMSA, and TAMSA with three parameter
sets: (α′ = 0.8, τ = 2), (α′ = 0.8, τ = 1.75), and
(α′ = 0.75, τ = 1.75). Again we see that the best error
floors are achieved with the TAMSA. The parameter set
(α′ = 0.75, τ = 1.75) exhibits the most gain, about 1.5
orders of magnitude compared to the AMSA and OMSA
for Eb/N0 = 4dB, but its waterfall performance is slightly
worse than for the parameter sets (α′ = 0.8, τ = 2) and
(α′ = 2, τ = 1.75). We note that this behavior allows us

6In all of our examples, the dominant problematic objects are determined
following the method of [14], i.e., by recording the variable node error
locations in the graph after numerical computer simulations over a variety
of SNRs, then classifying the sub-graphs and tabulating statistics. At least 50
error frames are collected for each determination.

7It was observed through simulations that Eb/N0 = 2dB is the start of
the error floor in this case. Similar results, yielding the same conclusions, can
also be obtained for larger values of Eb/N0.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

6 IEEE TRANSACTIONS ON COMMUNICATIONS

0.6-10

0
0.5

-8

0.8
1

-6

1.5
2 1

-4

-9

-8

-7

-6

-5

(a) log10(FER) performance estimate.

-9.5

-9.5

-9
.5

-9
.5

-9.5

-9.5

-9
.5

-9
.5

-9
-9

-9

-9

-9

-9

-9

-9

-9

-9

-9

-8.5 -8.5 -8.5 -8.5
-8

.5

-8
.5

-8
.5

-8
.5

-8.5
-8.5

-8
.5

-8
.5

-8
.5

-8
.5

-8-8

-8

-8

-8

-7.5

-7
.5

-7
.5

-7
.5

-7

-7

-7

-6
.5

-6
.5

-6

-6

-5
.5

-5

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

(b) Contour plots of the log10(FER) performance estimate.

Fig. 3: Performance estimate of the (5, 3) absorbing set vs. different values of α and τ for Eb/N0 = 2dB.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 4: Simulated performance of an (8000,4000) LDPC code de-
coded with the MSA, AMSA, OMSA, TAMSA, and TOMSA. Solid
curves represent BER, dashed curves represent FER.

to tune the performance of the TAMSA to fit a particular
application by choosing the values of α′ and τ .

Fig. 6 shows the BER performance of the (highly struc-
tured) quasi-cyclic (155, 64) Tanner code for the AMSA
with different values of α, the TAMSA with parameter set
(α′ = 0.8, τ = 1.5), and the MSA. Again we see that, at high
SNRs, the TAMSA significantly outperforms both the AMSA
and the MSA, gaining about one order of magnitude in the
error floor. We further note that an important performance met-
ric for comparison of these algorithms is the average number
of iterations performed. Table I gives the average number of
iterations for the AMSA, MSA, and TAMSA recorded from
1dB to 8dB. We observe that AMSA and TAMSA have an
approximately equal number of average iterations. Moreover,
both AMSA and TAMSA provide a significant reduction in
the average number of iterations when compared to MSA at
low SNR. This advantage diminishes as the SNR increases and
we observe that all of the algorithms have a similar average
number of iterations at high SNR.

1.5 2 2.5 3 3.5 4
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 5: Simulated performance of the (1008,504) PEG-LDPC code
decoded with the AMSA, OMSA, and TAMSA. Solid curves repre-
sent BER, dashed curves represents FER.

Eb/N0 MSA AMSA TAMSA
1dB 68.95 59.28 59.24
2dB 30.4 23.13 22.9
3dB 7.82 6.28 6.2
4dB 3.06 2.95 2.87
5dB 1.97 1.98 1.98
6dB 1.44 1.46 1.46
7dB 1.09 1.1 1.1
8dB 0.85 0.86 0.86

TABLE I: Average number of iterations recorded for the quasi-cyclic
(155, 64) Tanner code with the MSA, AMSA, and TAMSA decoding
algorithms.

Finally, layered MP decoding of LDPC-BCs [39] has been
shown to converge faster than standard MP decoding and is
commonly employed in the implementation of quasi-cyclic
codes. Fig. 7 shows the BER performance of the quasi-cyclic
(155, 64) Tanner code, using both a layered MP decoder and
a standard MP decoder with 100 iterations each, for both the
MSA and the TAMSA with parameter set (α′ = 0.8, τ = 1.5).

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

SUBMITTED PAPER 7

1 2 3 4 5 6 7

10
-10

10
-8

10
-6

10
-4

10
-2

Fig. 6: Simulated performance of the (155, 64) Tanner LDPC code
with the MSA, AMSA, and TAMSA. Solid curves represent BER,
dashed curves represents FER.

1 2 3 4 5 6 7

10
-10

10
-8

10
-6

10
-4

10
-2

Fig. 7: Simulated BER performance of the (155, 64) Tanner LDPC
code with the MSA and the TAMSA with both layered MP and
standard MP decoding.

It can be seen that the TAMSA with both standard and layered
decoding outperforms the MSA and that the layered TAMSA
even is slightly better than the standard TAMSA in the error
floor. Taken together, the results of Figs. 4–7 illustrate the
robustness of TAMSA decoding.

C. Parameter Set Selection for TAMSA and TOMSA Decoders

We saw in Fig. 5 that the TAMSA parameter sets that lead
to the best error floor performance do not necessarily lead to
the best waterfall performance. Depending on the application
and design goals, the parameter sets can be chosen differently.

If α′ = αopt, where αopt is the optimal α for the AMSA
derived in [4], [5] using quantized DE, the best waterfall
performance is achieved. However, choosing α′ = αopt is best
suited to larger values of τ , since for τ = `max the TAMSA
and AMSA are the same, and our empirical results show that

there can be a loss in waterfall performance for smaller values
of τ .

In the error floor, instead of running time consuming code
simulations, the method of [18] can be applied to problematic
objects to find the parameter sets (α′, τ) that lead to the best
error floor performance. From the contour plots in Fig. 3(b)
of the FER performance of any code for which the (5, 3)
absorbing set is dominant in the error floor, it can be seen
that certain parameter sets (α′, τ) lead to significantly lower
FER values than others. These parameter sets can then be
used to guide the selection of the parameters that yield the
best error floor performance of any code for which the (5, 3)
absorbing set is dominant. According to Fig. 3(b), the best
error floor for a code containing the (5, 3) absorbing set should
be achieved by choosing a parameter set in the vicinity of
(α′ = 0.65, τ = 1).

If the goal is to achieve waterfall performance as good as the
AMSA with α = αopt and to achieve a better error floor than
the MSA or AMSA, a good starting point is to set α′ = αopt

and then choose the value of τ that leads to the best error floor
estimate associated with the dominant problematic object. If
there is more than one value of τ that satisfies this condition,
the largest should be chosen, since larger values of τ makes the
TAMSA perform closer to the AMSA optimized for waterfall
performance. In Fig. 3(b), αopt = 0.8, and therefore choosing
the parameter set (α′ = 0.8, τ = 1.5) should provide us with
good performance in both the waterfall and the error floor.
The simulation results in Fig. 4 of the (8000, 4000) LDPC-BC
using this parameter set illustrates the advantage of following
this approach.

In Figs. 2, 4, and 5, we see that the OMSA slightly
outperforms the AMSA at high SNRs. This follows from the
fact that, for the chosen values of `max, α, and β, the LLR
magnitudes for the OMSA grow to larger values than for the
AMSA (quantized value of `max − β = 2.10 vs. quantized
value of α×`max = 1.8). Adopting the terminology that check
node LLRs larger than τ are reliable while those below τ are
unreliable, the reliable check node LLRs of the OMSA (with
magnitudes up to 2.10) are more likely to “correct” additional
errors inside a problematic object G(A) than those of the
AMSA (with magnitudes only up to 1.8). However, in Fig. 4,
we see that the TAMSA has better error floor performance
than the TOMSA. While the check node LLRs that satisfy (7)
or (8), i.e., the reliable LLRs, for both the TAMSA and the
TOMSA can grow to `max, the check node LLRs that don’t
satisfy (7) or (8) i.e., the unreliable LLRs, are limited to
values smaller than τ (a quantized value of α′ × τ = 1.2
for the TAMSA vs. a quantized value of τ −β′ = 1.85 for the
TOMSA). Consequently, for the parameter sets chosen in our
examples, the TAMSA makes the unreliable check node LLRs
smaller than for the TOMSA, which helps TAMSA “correct”
more errors by slowing down the check node LLR convergence
inside a problematic object.

We note that, as discussed in Section IV-A, AMSA (resp.
OMSA) can be viewed as a particular case of TAMSA (resp.
TOMSA) and, as such, the performance of TAMSA (resp.
TOMSA) is at least as good as AMSA (resp. OMSA) with
optimal parameter selection. Moreover, we have demonstrated

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

8 IEEE TRANSACTIONS ON COMMUNICATIONS

significant performance improvements for a variety of code
structures and lengths.

V. APPLICATION OF THE TAMSA TO SPATIALLY COUPLED
LDPC CODES

SC-LDPCCs are known to combine the best features of both
regular and irregular LDPC-BCs, i.e., they achieve excellent
performance both in the waterfall and the error floor regions of
the BER (FER) curve [40]. In this section, we use the TAMSA
to decode SC-LDPCCs to further verify the effectiveness of
the algorithm and to illustrate the benefit of combining the
advantages of spatial coupling and the TAMSA.

A. Background

1) SC-LDPC Parity-Check Matrix: Given an underlying
LDPC-BC with a µ × ν parity-check matrix HBC and rate
RBC = 1 − µ

ν ,8 a terminated SC-LDPCC with parity-check
matrix HL

SC and syndrome former memory m can be formed
by partitioning HBC into m component matrices Hi, i =
0, 1, . . . ,m, each of size µ × ν, such that HBC =

∑m
i=0 Hi,

and arranging them as

HL
SC =

H0

H1 H0

... H1
. . .

Hm

...
. . . H0

Hm
. . . H1

. . .
...

Hm

µ(L+m)×νL

, (9)

where the coupling length L > m + 1 denotes the num-
ber of block columns in HSC and the rate of the termi-
nated SC-LDPCC represented by HL

SC is given by RLSC =
νL−µ(L+m)

νL = 1− µ
ν

(
1 + m

L

)
, such that lim

L→∞
RLSC = 1− µ

ν =

RBC.
2) Sliding Window Decoding of SC-LDPCCs: A sliding

window (SW) decoder was introduced in [41] to address the
large latency and complexity requirements of decoding SC-
LDPCCs with a standard flooding schedule decoder. Fig. 8,
adapted from [41], shows an SW decoder with window size
W = 6 (blocks) operating on the parity-check matrix HSC of
an SC-LDPCC with m = 2 and L = 10. All the variable nodes
and check nodes included in the window (the blue area) are
updated using an MP algorithm that has access to previously
decoded symbols (the red area). The goal is to decode the
variable nodes in the first block of the window, called the
target symbols (the green area). The MP algorithm updates
the nodes in the window until some maximum number of
iterations Imax, after which the first block of target symbols is
decoded. Then the window slides one block (ν code symbols)
to the right and one block down (µ parity-check symbols) to
decode the second block, and the process continues until the
last block of target symbols is decoded.

8In this section, we ignore the slight rate loss that may occur if a parity-
check matrix contains a few redundant rows.

L = 10

L+m = 12

W = 6

W

m = 2

H0

H1

H2

target symbols

HSC =

Fig. 8: An SW decoder for an SC-LDPCC operating on the parity-
check matrix HSC.

H
0

0

H
0

1

HBC =

Fig. 9: LDPC-BC with 4000×8000 parity-check matrix HBC, µ′ =
4, ν′ = 8, and γ = 1000, is partitioned by a cutting vector w =
[1, 3, 5, 7] to construct the two component matrices H0 and H1 based
on H′

0 and H′
1. (Each square represents a γ × γ matrix.)

3) Cut-and-Paste Construction of SC-LDPCCs: For the
case m = 1,9 the cut-and-paste method [42] of constructing
SC-LDPCCs uses a cutting vector w = [w0, w1, . . . , wµ′−1]
of non-decreasing non-negative integers (0 < w0 ≤ w1 ≤
· · · ≤ wµ′−1 < ν′) to form two component matrices H0

and H1 from a µ × ν LDPC-BC parity-check matrix HBC.
The cutting vector partitions HBC, composed of a µ′ × ν′

array of γ × γ blocks such that µ× ν = µ′γ × ν′γ, into two
parts, one below and one above the cut, which we represent
by H′0 and H′1, respectively. Fig. 9 shows an example of a
matrix HBC of size 4000× 8000, where µ′ = 4, ν′ = 8, and
γ = 1000, being partitioned into H′0 and H′1 by the cutting
vector w = [1, 3, 5, 7]. H0 and H1 in (9) are then obtained by
taking H′0 and setting the H′1 part to all zeros and by taking
H′1 and setting the H′0 part to all zeros, respectively, where we
note that H0 + H1 = HBC. The resulting code rate is given
by RLSC = 1− (L+1)µ

Lν = 1− µ
ν

(
1 + 1

L

)
, where the underlying

LDPC-BC has rate RBC = 1 − µ
ν . For quasi-cyclic LDPC-

BCs, such as array codes and Tanner codes, the parameter γ
is set equal to the size of the circulant permutation matrices
in order to maintain the code structure.

B. Simulation Results

We now present simulation results for the SC-LDPCC
versions of the (8000, 4000) LDPC-BC and the quasi-cyclic
(155, 64) Tanner code decoded with the TAMSA and an SW
decoder with W = 6, where 50 iterations were performed at
each window position. The SC-LDPCCs both have coupling
length L = 50 and syndrome former memory m = 1. For

9Syndrome former memorym = 1 is chosen for illustration, but the method
easily extends to larger values of m.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

SUBMITTED PAPER 9

1 1.5 2 2.5 3 3.5 4
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 10: Simulated performance of an (8000, 4000) LDPC-BC and
its spatially coupled version decoded with the MSA, AMSA, and
TAMSA. Dashed curves represent the LDPC-BC, solid curves repre-
sent the SC-LDPCC decoded with an SW decoder with W = 6.

the (8000, 4000) code, γ = 1000 and the cutting vector
w = [1, 3, 5, 7] (as shown in Fig. 9) was chosen, and for the
(155, 64) Tanner code, γ = 31 and w = [2, 3, 5] was chosen,
where the size of the circulant permutation matrices is 31.

Fig. 10 shows the BER performance of the (8000, 4000)
LDPC-BC and its spatially coupled version decoded with an
SW decoder with W = 6 for the MSA, the AMSA with α =
0.8, and the TAMSA with parameter set (α′ = 0.8, τ = 1.5).
We see that, for the chosen parameters, the TAMSA again has
nearly two orders of magnitude better error floor performance
than the MSA and the AMSA, for both the LDPC-BC and the
SC-LDPCC, and it maintains the same waterfall performance.
In addition, the spatial coupling yields a waterfall gain of
about 0.5dB for all the decoding algorithms compared to the
underlying LDPC-BC. Moreover, the dominant problematic
object for both the LDPC-BC and the SC-LDPCC decoded
with the algorithms and parameters in Fig. 10 is the (5, 3)
absorbing set of Fig. 1. The multiplicity of this object is
N = 14 and N̂ = 4.92 for the LDPC-BC and SC-LDPCC,
respectively, where N̂ is the average multiplicity per block
of size ν = 8000 [24]. Therefore, spatial coupling reduces
the number of dominant problematic objects by 64%. This
explains the almost one order of magnitude gain in the error
floor obtained by spatial coupling compared to the underlying
LDPC-BC.

Fig. 11 shows the BER performance of the quasi-cyclic
(155, 64) Tanner code and its spatially coupled version de-
coded with an SW decoder with W = 6 for the MSA, the
AMSA with α = 0.8, and the TAMSA with parameter set
(α′ = 0.8, τ = 1.5). Again, we see that the TAMSA outper-
forms the AMSA and the MSA at high SNRs by about one
order of magnitude in the error floor, for both the LDPC-BC
and the SC-LDPCC.10 We also note an approximately 2dB

10The “error floor” for these codes are designated by the change of slope
observed at approximately 3dB and 5dB for the SC-LDPCC and LDPC-BC,
respectively.

0 2 4 6 8 10

10
-10

10
-8

10
-6

10
-4

10
-2

Fig. 11: Simulated performance of the quasi-cyclic (155, 64) Tanner
LDPC-BC and its spatially coupled version decoded with an SW
decoder with W = 6 and the MSA, AMSA, and TAMSA.

gain of the SC-LDPCC compared to its underlying LDPC-
BC in the waterfall. The dominant problematic object for
the (155, 64) Tanner LDPC-BC decoded with the algorithms
and parameters in Fig. 11 is an (8, 2) absorbing set. The
multiplicity of this object is N = 465, but in this case N̂ = 0
for the SC-LDPCC, i.e., this object is completely removed by
spatial coupling. As a result, we observe almost five orders
of magnitude gain at Eb/N0 > 3dB for the SC-LDPCC
compared to the underlying LDPC-BC!

VI. CONCLUSION

In this paper, a modified version of the MSA was proposed
to lower the error floor performance of quantized LDPC
decoders. Based on the assumption that a problematic object,
such as a trapping set or absorbing set, is the dominant
cause of the error floor, the proposed TAMSA (TOMSA)
selectively attenuates (offsets) a check node LLR if the check
node receives any variable node LLR with magnitude below
some threshold τ , while allowing a check node LLR to reach
the maximum quantizer level if all the variable node LLRs
received by the check node have magnitude greater than τ .
This new approach can decode some received vectors of
channel LLRs that become stuck, and thus cannot be decoded
correctly, using previously proposed versions of the MSA. We
note that, even though the method is based on the knowledge
that problematic objects are the dominant cause of the error
floor, the algorithm requires no knowledge of the location,
type, or multiplicity of such objects and can be implemented
with only a minor modification to the decoder hardware. The
complexity of the algorithm was shown to be comparable to
the complexity of AMSA or OMSA. As an alternative to
running time-consuming simulations, an error floor estimation
technique was used to guide the selection of the parameter sets
that yield the best error floor performance. Finally, simulation
results presented for several codes, including both LDPC-BCs
and SC-LDPCCs, demonstrated that the TAMSA (TOMSA)
combines the advantages of both the MSA and the AMSA

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2969902, IEEE
Transactions on Communications

10 IEEE TRANSACTIONS ON COMMUNICATIONS

(OMSA) to offer better error floor performance without sac-
rificing waterfall performance.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. IT-8, Jan. 1962.

[2] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May
1999.

[3] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb 2001.

[4] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug 2005.

[5] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation
of min-sum algorithm and its modifications for decoding low-density
parity-check (LDPC) codes,” IEEE Trans. Commun., vol. 53, no. 4, pp.
549–554, April 2005.

[6] Meng Xu, Jianhui Wu, and Meng Zhang, “A modified offset min-sum
decoding algorithm for LDPC codes,” in 3rd International Conference
on Computer Science and Information Technology, vol. 3, July 2010,
pp. 19–22.

[7] Zhou Zhong, Yunzhou Li, Xiang Chen, Hanying Hu, and Jing Wang,
“Modified min-sum decoding algorithm for LDPC codes based on clas-
sified correction,” in Third International Conference on Communications
and Networking in China, Aug 2008, pp. 932–936.

[8] J. Tang, T. Bhatt, and V. Stolpman, “Modified min-sum algorithm
for LDPC decoders in UWB communications,” in IEEE International
Conference on Ultra-Wideband, Sep. 2006, pp. 125–130.

[9] X. Zhang and P. H. Siegel, “Quantized min-sum decoders with low error
floor for LDPC codes,” in IEEE International Symposium on Information
Theory Proceedings, July 2012, pp. 2871–2875.

[10] D. Oh and K. K. Parhi, “Optimally quantized offset min-sum algorithm
for flexible LDPC decoder,” in 42nd Asilomar Conference on Signals,
Systems and Computers, Oct 2008, pp. 1886–1891.

[11] D. Oh and K. K. Parhi, “Min-sum decoder architectures with reduced
word length for LDPC codes,” IEEE Trans. Circuits Syst., I, vol. 57,
no. 1, pp. 105–115, Jan 2010.

[12] J. Zhang, M. Fossorier, D. Gu, and J. Zhang, “Two-dimensional correc-
tion for min-sum decoding of irregular LDPC codes,” IEEE Commun.
Lett., vol. 10, no. 3, pp. 180–182, March 2006.

[13] X. Wu, Y. Song, M. Jiang, and C. Zhao, “Adaptive-normalized/offset
min-sum algorithm,” IEEE Commun. Lett., vol. 14, no. 7, pp. 667–669,
July 2010.

[14] T. J. Richardson, “Error floors of LDPC codes,” in 41st Annu. Allerton
Conf. Commun., Control, Comput., Monticello, IL, USA, Oct 2003, p.
1426– 1435.

[15] O. Milenkovic, E. Soljanin, and P. Whiting, “Asymptotic spectra of
trapping sets in regular and irregular LDPC code ensembles,” IEEE
Trans. Inf. Theory, vol. 53, no. 1, pp. 39–55, Jan 2007.

[16] M. Karimi and A. H. Banihashemi, “On characterization of elementary
trapping sets of variable-regular LDPC codes,” IEEE Trans. Inf. Theory,
vol. 60, no. 9, pp. 5188–5203, Sep. 2014.

[17] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181–201,
Jan. 2010.

[18] H. Hatami, D. G. M. Mitchell, D. J. Costello, and T. E. Fuja,
“Performance bounds and estimates for quantized LDPC decoders,”
IEEE Transactions on Communications, to appear, 2019. [Online].
Available: https://arxiv.org/abs/1911.02762

[19] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, and M. Wain-
wright, “Predicting error floors of structured LDPC codes: deterministic
bounds and estimates,” IEEE J. on Sel. Areas in Commun., vol. 27, no. 6,
pp. 908–917, August 2009.

[20] B. K. Butler and P. H. Siegel, “Error floor approximation for LDPC
codes in the AWGN channel,” IEEE Trans. Inf. Theory, vol. 60, no. 12,
pp. 7416–7441, Dec 2014.

[21] J. Sun, O. Y. Takeshita, and M. P. Fitz, “Analysis of trapping sets for
LDPC codes using a linear system model,” in Proc. 42nd Annu. Allerton
Conf., Monticello, IL, USA,, Sep./Oct. 2004, pp. 1701–1702.

[22] S. Zhang and C. Schlegel, “Controlling the error floor in LDPC
decoding,” IEEE Trans. Commun., vol. 61, no. 9, pp. 3566–3575, Sept.
2013.

[23] H. Xiao, A. Banihashemi, and M. Karimi, “Error rate estimation of low-
density parity-check codes decoded by quantized soft-decision iterative
algorithms,” IEEE Trans. Commun., vol. 61, no. 2, pp. 474–484, Feb.
2013.

[24] H. Hatami, D. G. M. Mitchell, D. J. Costello, and T. E. Fuja, “Perfor-
mance bounds for quantized spatially coupled LDPC decoders based on
absorbing sets,” in Proc. IEEE Int. Symp. Inf. Theory, June 2018, pp.
826–830.

[25] X. Zhang and P. Siegel, “Quantized iterative message passing decoders
with low error floor for LDPC codes,” IEEE Trans. Commun., vol. 62,
no. 1, pp. 1–14, Jan. 2014.

[26] S. Tolouei and A. H. Banihashemi, “Lowering the error floor of LDPC
codes using multi-step quantization,” IEEE Commun. Lett., vol. 18, no. 1,
pp. 86–89, January 2014.

[27] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A bit-serial
approximate min-sum LDPC decoder and FPGA implementation,” in
IEEE Int. Symp. Circuits Syst., May 2006.

[28] F. Angarita, J. Valls, V. Almenar, and V. Torres, “Reduced-complexity
min-sum algorithm for decoding LDPC codes with low error-floor,”
IEEE Trans. Circuits Syst., I, vol. 61, no. 7, pp. 2150–2158, July 2014.

[29] S. Hemati, F. Leduc-Primeau, and W. J. Gross, “A relaxed min-sum
LDPC decoder with simplified check nodes,” IEEE Commun. Lett.,
vol. 20, no. 3, pp. 422–425, March 2016.

[30] C. Zhang, Z. Wang, J. Sha, L. Li, and J. Lin, “Flexible LDPC decoder
design for multigigabit-per-second applications,” IEEE Trans. Circuits
Syst., I, vol. 57, no. 1, pp. 116–124, Jan 2010.

[31] G. B. Kyung and C. C. Wang, “Finding the exhaustive list of small fully
absorbing sets and designing the corresponding low error-floor decoder,”
IEEE Trans. Commun., vol. 60, no. 6, pp. 1487–1498, June 2012.

[32] N. Varnica, M. P. C. Fossorier, and A. Kavcic, “Augmented belief
propagation decoding of low-density parity check codes,” IEEE Trans.
Commun, vol. 55, no. 7, pp. 1308–1317, July 2007.

[33] Y. Han and W. E. Ryan, “Low-floor decoders for LDPC codes,” IEEE
Trans. Commun., vol. 57, no. 6, pp. 1663–1673, June 2009.

[34] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An
efficient 10GBASE-T ethernet LDPC decoder design with low error
floors,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 843–855, April
2010.

[35] A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convo-
lutional codes with low-density parity-check matrix,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 2181–2191, Sept. 1999.

[36] C. Wey, M. Shieh, and S. Lin, “Algorithms of finding the first two
minimum values and their hardware implementation,” IEEE Trans.
Circuits. Syst., I, vol. 55, no. 11, pp. 3430–3437, Dec 2008.

[37] D. J. C. MacKay. Encyclopedia of sparse graph codes. [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[38] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 2966–2984, Dec 2004.

[39] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in Proc. IEEE Wksp. Sig. Processing Sys.,
Oct 2004, pp. 107–112.

[40] D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell, and
R. Smarandache, “Spatially coupled sparse codes on graphs: theory and
practice,” IEEE Communications Magazine, vol. 52, no. 7, pp. 168–176,
July 2014.

[41] A. Iyengar, M. Papaleo, P. Siegel, J. Wolf, A. Vanelli-Coralli, and
G. Corazza, “Windowed decoding of protograph-based LDPC convo-
lutional codes over erasure channels,” IEEE Trans. Inf. Theory, vol. 58,
no. 4, pp. 2303–2320, April. 2012.

[42] D. G. M. Mitchell, A. E. Pusane, and D. J. Costello, “Minimum distance
and trapping set analysis of protograph-based LDPC convolutional
codes,” IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 254–281, Jan 2013.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 17:05:07 UTC from IEEE Xplore. Restrictions apply.

